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1 Project Abstract

Project Title: A New Methodology for Early Anomaly Detection of BWR Instabilities

Participant:  Kostadin Ivanov, The Pennsylvania State University, (814) 865-0040, kni 1@psu.edu

The objective of the performed research is to develop an early anomaly detection methodology so as to
enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power
plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting
small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated
operation schedule.

The research utilizes amode of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which
is used as a generator of time series data for anomaly detection at an early stage. The model captures
critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (dow time-
scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this
nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics
for characterization of model parameter changes that quantitatively represent small anomalies. The major
focus during the ¥ year research activity was on developing algorithms of pattern recognition for power
instability based on anomaly detection from time series data, which later can be used to formulate real-
time decision and control agorithms for suppression of power oscillations for a variety of anticipated
operating conditions.

The research being performed in the framework of this project is essentiad to make significant
improvement in the capability of therma instability analyses for enhancing safety, availability, and
operationa flexibility of currently operating and next generation BWRs.
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3 DESCRIPTION OF PERFORMED WORK

3.1 Objectives

The objective of this research, which is supported by the US Department of Energy under the NEER
program, is to develop an early anomaly detection methodology in order to enhance safety, availability,
and operationa flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach
relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early
stage and taking appropriate prognostic actions based on an anticipated operation schedule.

The model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, based on the US
NRC coupled code TRACE/PARCS™, is being sed as a generator of time series data for anomaly
detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic
and nuclear reactor dynamics and (low time-scale) evolution of the anomalies as non-stationary
parameters. The time series data derived from this nonlinear non-stationary model serves as the source of
infamation for generating the symbolic dynamics for characterization of model parameter changes that
quantitatively represent small anomalies. This information is then used to develop agorithms of pattern
recognition for power instability based on anomaly detection from time series data and to formulate real-
time decision and control agorithms for suppression of power oscillations for a variety of anticipated
operating conditions.

3.2 Development of Anomaly Detection M ethodology

The performed work during the first year of the project, which is described in this paper, focused on
the construction of proposed anomaly detection methodology®. The concept is based on the fact that
nonlinear systems show bifurcation, which is a change in the qualitative behavior as the system
parameters vary. Some of these parameters may change on their own accord and account for the anomaly,
while certain parameters can be altered in a controlled fashion.

The non-linear, non-autonomous BWR system model considered in this research exhibits phenomena
a two time scales. Anomalies occur a the dow time scale while the observation of the dynamical
behavior, based on which inferences are made, takes place at the fast time scale. It is assumed that: (i) the
system behavior is stationary at the fast time scale; and (ii) any observable non-stationary behavior is
associated with parametric changes evolving at the slow time scale. The goal is to make inferences about
evolving anomalies based on the asymptotic behavior derived from the computer simulation. However,
only sufficient changes in the slowly varying parameter may lead to detectable difference in the
asymptotic behavior. The need to detect such small changes in parameters and hence early detection of an
anomaly motivates the utilized stimulus-response approach. In this approach, the model of a BWR system
is perturbed with an appropriate known input excitation to observe the asymptotic behavior at the fast
time scale. A set of suitable input excitation parameters or stimuli are employed and the separate response
of the BWR system to each of these stimuli is determined. As a result of the combination of the input
stimulus and perturbed parameter(s), it is possible to observe a detectable change in the nature of
asymptotic behavior that would otherwise remain unperceivable over along period of time.

The developed anomaly detection methodology is built upon the concepts of Symbolic Dynamics,
Finite State Automata, and Pattern Recognition to qualitatively describe the dynamical behavior in terms
of symbol sequences at thefast-time sce®. Appropriate phase space partitioning of the dynamical system
yields an aphabet to obtain symbol sequences from time series data. To identify statistical patterns in
these symbolic sequences, the tools of Computational Mechanics are used through construction of a



(probabilistic) finite-state machine from each symbol sequence. Transition probability matrices of the
finite state machines, obtained from the symbol sequences, capture the pattern of the system behavior by
information compression. A detectable change in the pattern represents a deviation of the nominal

behavior from an anomalous one and suffices for anomaly detection. The state probability vectors derived
from the respective connection (state transition) matrices under the nominal and an anomalous condition,
yield a vector measure of the anomaly. This vector measure provides more information than a scalar
measure such as the complexity measure.

In contrast to the emachine that has an a priori unknown structure and yields optima pattern
discovery in the sense of mutua information, the state machine adopted here has an a priori known
structure that can be freely chosen. Although this approach is suboptimal, it provides a common state
machine structure where physical significance of each state is invariant under changes in the statistical
patterns of symbol sequences. This feature allows unambiguous detection of possible anomalies from
symbol sequences at different (dow-time) epochs. This fixed structure fixed-order Markov chain called
the D-Markov machine is apparently computationally faster than the emachine because of significantly
fewer number of floating point arithmetic operations. These are the motivating factors for introducing the
D-Markov machine. The machines described above recognize patterns in the behavior of a dynamical
system that undergoes anomalous behavior. In order to quantify changes in the patterns that are
representations of evolving anomalies, we induce an anomaly measure on these machines denoted by M.

The anomaly detection methodology is separated into two parts:

i) Forward problem;
i) Inverse problem.

The first year activity described here has been concentrated on the forward problem to build a firm
foundation for further development of the methodology. The objective in the forward problem isto learn
how the grammar underlying the system dynamics changes as the system parameters change. In other
words, the forward problem is that of learning where the value of a parameter is associated with an
anomaly measure. The following steps are identified to solve the forward problem:

1. Selection of appropriate Input Stimuli.

2.Signalnoise separation, time interval selection, and phase-space construction.

3.Choice of a phase space partitioning to generate Symbolic Dynamics.

4. State Machine construction using generated symbol sequence(s) and determining the connection
matrix.

5. Selection of an appropriate metric for the anomaly measure M.
6. Formulation and calibration of a (possibly non-parametric) relation between the computed anomaly

measure and known physical anomaly under which the time series data were collected at different
(dow-time) epochs.



3.2.1 Symbolic Dynamics and Encoding

This section introduces the concept of Symbolic Dynamics and its usage for encoding nonlinear
system dynamics from observed time series data. Let a continuoudly varying physical process be modeled
asafinite-dimensiona system in the setting of an initial value problem as:

dx(t) _ : _
—r - F(x(®).0); xO) =x0 (3.)
where t] [0,¥) isthetime; xT A" isthe state vector in the phase space; and qT A™ isthe (possibly
dowly) varying parameter vector. The sole usage of the model in the Equation 3.1 may not aways be
feasible due to unknown parametric and non-parametric uncertainties and noise. A convenient way of

learning the dynamical behavior isto rely on the additional information provided by (sensor-based) time
series data.

A tool for behavior description of nonlinear dynamical systems is based on the concept of Formal
Languages for trangitions from smooth dynamics to a discrete symbolic description. The phase space of
the dynamica system in the above equation is partitioned into a finite number of cells, so as to obtain a

i pn
coordinate grid of the space. For smplicity, a compact (i.e., closed and bounded) region WI R
within which the motion is circumscribed is identified with the phase space itself. The encoding of W is

accomplished by introducing a Bo° {Bg,--,Bp.1} consisting of Mp mutualy exclusive (i.e,
L1 Mp-1

BjNBk =4, "] * K) and exhaustive (i.e, ]_L:JO B; =W) cdlls. The dynamical system describes an

orbit O ° {xg,% -, Xn -} which passes through or touches the cells of the partition B . Let us denote

the index of domain visited at the time instant i as the symbol S I A , Where the set A o n, distinct

symbols that labels the partition elements is called the symbol alphabet (Note: A symbol alphabet Ais
caled a generating partition of the phase space W if a legdl, i.e, physically admissible, symbol
seguence uniquely determines a specific initial condition X, , implying that the mapping from the phase

space to the symbol space is bijective) Each initia state X, in W generates a sequence of symbols
defined by a mapping from the phase space to the symbol space as.

Xo > § 8§ @2

The mapping in the Equation (3.2) is caled Symbolic Dynamics as it attributes a legal symbol
sequence to the system dynamics starting from an initial state. Although the theory of symbolic dynamics
is well developed for one-dimensional mappings, very few results are known for two and higher
dimensional systems. Recently, a technique for obtaining generating partition directly from the time series
has been proposed by Kennel and Buhl. Figure 3.1 elucidates partitioning of a finite region of a phase
space and a mapping from the partitioned space into the symbol a phabet, which becomes a representation
of the system dynamics defined by the trgjectories. It aso shows the conversion of the symbol sequence
into afinite state machine as explained in later sections.
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Figure 3.1 Phase Space Partitioning

Finding a partitioning is a difficult task especidly if the time series data is noise-contaminated.
Several methods of phase-gpace partitioning have been suggested in literature. Apparently, there exist no
well-established procedure for phase-space partitioning and this is a subject of active research.

We have used two approaches to find the partitioning needed to construct the symbol sequence. The
first approach is the symbolic false nearest neighbors (SFNN) approach by Kennel and Buhl. The
objective of this gpproach isto find a "generating” partition, where symbolic orbits uniquely identify one
continuous space orbit, and thus the symbolic dynamics is fully equivalent to the continuous space
dynamics. The method optimizes an essentia property of a generating partition: avoiding topological
degeneracies. The criterion is that short sequences of consecutive symbols ought to localize the
corresponding state space point as well as possible. The central idea is to form a particular geometrical
embedding of the symbolic sequence under the candidate partition and evauate, and minimize, a
gatistics, which quantifies the apparent errors in localizing state space points. In a good partition, nearby
points in the embedding remain close when mapped back into the state space. By contrast bad partitions
induce topologica degeneracies where symbolic words map back to globally distinct regions of state
space. The nearest neighbor, in Euclidean distance, to each point in the embedding is found. Knowing
symbolic neighbors, we find distances of those same points back in state space. Better partitions give a
smaller proportion of symbolic false nearest neighbors. For concrete numerical calculations, the partitions
are parameterized with a relatively small number of free parameters by defining the partitions with
respect to a set of radia-basis "influence” functions. The statistics for symbolic false nearest neighbors is
minimized over the free parameters using "differential evolution", a genetic algorithm suitable for
continuous parameter spaces.

The second approach used, we will hereby call the wavelet space (WS) method is a new approach that
we have introduced and that uses wavelet transform to convert the time series data to time-frequency data
for generating the symbol sequence. The graphs of wavelet coefficients versus scale at selected time shifts
are stacked starting with the smallest value of scale and ending with its largest value and then back from
the largest value to the smallest value of the scale at the next instant of time shift. The resulting scale
series data in the wavel et space is analogous to the time series data in the phase space Then, the wavel et
space is partitioned into segments of coefficients on the ordinate separated by horizontal lines. The



number of segments in a partition is equal to the size of the aphabet and each partition is associated with
a symboal in the alphabet.

Having defined a partition, the time series or scale series data is converted to a symbol sequence that,
in turn, is used for construction of a finite state machine using the tools of Computational Mechanics.
Two aternative techniques of finite-state machine construction are: (i) the e machine construction; and
(i) a new technique based on D™ order Markov chains, caled the D-Markov machine, for identifying
patterns based on time series analysis of the observed data. Both techniques rely on information-theoretic
principles and are based on Computational Mechanics. The anomaly detection methodology implemented
in this research utilizes the D-Markov machine for finite-state machine construction.

3.2.2 The Suboptimal D-Markov Machine

This section describes the implemented technique for representing the pattern in a symbolic process,
which is motivated from the perspective of anomaly detection. The core assumption here is that the
symbolic process can be represented to a desired level of accuracy as a D™ order Markov chain, by

appropriately choosing DT N . A stochastic symbolic stationary process S © ++»S. 2818+, is
called D™ order Markov Process if the probability of the next symbol depends only on the previous D
symboals, i.e. the following condition holds:

P(s |S-15.2---)=P(s |S.1--S-p) (3.3

For agiven DI N and neglecting the transient states, we define the following effective states of the
symbolic process:

Q={sP:sPT AD} (3.4)

The random vector for the above set of states is denoted by Q and theiith state asq;. Given an initia
dtate and the next symbol from the origina process, only certain successor states are possible. This is
represented as the alowed transitions between the states and the probabilities of these transitions as:

®1
T¥ =P(S =5Q¢=0q; |Q =q;) (35)

for al 6.0;1 Q. Note tha Ti” =0 for 0O =SS-Spand s = SIS such that
$S;..Sp 1 §...8f . Thus, the stochastic matrix T is a branded matrix with at most | A®** | nonzero
entries.

The construction of a D-Markov machine is fairly straightforward. On a given symbol sequence, a
window of length D+1 is dided by keeping a count of the frequency of occurrence of sequences

Si--SpSps1and Si---Spwhich are respectively denoted by N(S.--.SpSpiq) and  N(S.--Sp) . Note
that if N(S;--Sp) = Othen the state 4 =S...5 1 Q does not exist. The transitions probabilities are then
obtained by these frequency counts as follows, (for N(s..sp)t 0 ):

10



T = P(s---SpS) _ N(s;.-SpS)

! P(s...S5)  N(s..Sp) (3.6)

where, 0; =S... and 4; = $..-SpS.

@ (Poo 1P 0 0 ]
0

1 |0 0 Por 1Py
P 1-py 0 0
qo‘o 0 0 Pi 1Py

Figure 3.2 State Machinewith D=2, and |A|=2

As an example, Figure 3.2 shows construction of the finite state machine and the associated state
transition matrix for a D-Markov process, where the aphabet size | A |= 2 and the states are chosen as

words of length D=2 from the symbol sequence. Therefore, the total number of statesis| A |° = 4, which
is the number of permutations of the aphabet symbols within aword of length D. The states are joined by
edges labeled by a symbol in the aphabet. The state machine moves from one state to another upon
occurrence of an event as a new symbol in the symbol sequence is received. The machine language is
complete in the sense that there are different outgoing edges marked by different symbols; however, it is
possible that the some of these arcs may have zero probability.

In genera, the effects of an anomaly are reflected in the respective state transition matrices. Thus, the
dructure of the finite state machine is fixed for a given aphabet size and window length D. Furthermore,
the number of edgesis aso finite because of the finite alphabet size. The elements of the state transition
matrix (that is a stochastic matrix) are identified from the symbol sequence.

3.2.3 Anomaly Measur e and Detection

The machines described above recognize patterns in the behavior of a dynamica system that
undergoes anomalous behavior. In order to quantify changes in the patterns that are representations of
evolving anomalies, we induce an anomaly measure on these machines denoted by M. The anomaly
measure M can be congtructed based on the following information-theoretic quantities. entropy rate,
excess entropy, and complexity measure of asymbol string S.

The entropy rate hm(S) quantifies the intrinsic randomness in the observed dynamical process.
The excess entropy E(S) quantifies the memory in the observed process.

The datistical complexity Ci(S) of the state machine captures the average memory
requirements for modeling the complex behavior of a process.

Given two symbol strings Sand § it is possible to obtain a measure of anomaly by adopting any one
of the following three alternatives:

11



N

.:.| hin(S) - hn(Sp) |, or
i E(S)- E(Sy) |,or
L 1Cn(S)- Cu(So) |

M(S,S
(S%) .

Note that each of the anomaly measures, defined above, is a pseudo metric. For example, let us
consider two periodic processes with unequal periods, represented by Sand . For both processes

hm =0 , S0 that M (S, So) = O for the first of the above three options, even if St So .

The above measures are obtained through scalar-valued functions defined on a state machine and do
not exploit the rich algebraic structure represented in the state machine. For example, the connection
matrix T associated with the emachine can be treated as a vector representation of any possible anomalies
in the dynamica system. The induced 2-norm of the difference between the T-matrices for the two state

machines can be used as a measure of anomaly, i.e. M (S, S) =|T - To|, . Such ameasure was found

to be effective. However, there is some subtlety in using this measure on e machines, because e machines
do not guarantee that the machines formulated from the symbol sequences Sand S have the same

number of states; and these states do not necessarily have ssimilar physical significance. In generd, T and
To may have different dimensions and different physical significance. However, by encoding the causal

states, T could be embedded in a larger matrix, and an induced norm of the difference between T
matrices for these two machines can be defined. Alternatively, a (vector) measure of anomaly can be

derived directly from the stochastic matrix T as the left eigenvector p corresponding to the unit
eigenvaue of T , which is the state probability vector under a stationary condition.

In the case of D-Markov machines, which have a fixed state structure, the state probability vector p
associated with the state machine have been used for a vector representation of anomalies, leading to the

anomaly measure M (S, Sp) as a distance function between the respective probability vectors p and po
(that are of identical dimensions), or any other appropriate functional.

12



3.3 TheBWR Reference Model

The US NRC coupled code TRACE/PARCS is used to generate the time series data. The reference
BWR model for this study is based on the Peach Bottom 2 (PB2), for which the TRACE/PARCS models
have been validated in the framework of the OECD/NRC BWR TT Benchmark®. The plant nodalisation
scheme, which served to develop the systeminput deck of TRACE, isgiven in Figure 3.3.

The TRACE-inputs decks have been specifically designed to conduct this study. In particular, the
control system (Figure 3.4) was provided with capability for different system perturbations. Point kinetics
model and three-dimensional kinetics PARCS model were developedto perform either TRACE stand-
aone (with point kinetics model) or coupled TRACE/PARCS steady-state and transient smulations.
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Figure 3.3 PB2 Plant Nodalization

The control system serves a dual purpose: fird, it is set up to adjust the plant’s relevant parametersto
their rated conditions set-points, as reported in Table 3.1; secondly, the control system provides capability
for system perturbation. A schematic of the control systemisin Figure 3.4.

13



Set
Point
INPUT v )
Actual o Weighted
Value [™ Subtract = Divide |t Integrate| | g eightec
Sum
Steady
OUTPUT | State |-a| Add Lag
Output
Referencel
O
PERTURBATION MR
‘ K sin(2 pi omega t)
B
Steady
State L= Add _._Perturbed PERTURBED
Output Output | OUTPUT

Figure 3.4 Control System Schemeatic

Table 3.1 BWR Full Power Steady-State Conditions

Therma Power [MW] 3293
Feedwater / Steam Mass Flow rate [kg/g| 1685
Core Mass Flow rate [kg/s| 12915
System Pressure [MP4] 7.03

Downcomer Water Level [m] 11.2

Core Inlet Subcooling [K] 13

14




3.4.Selection of Appropriate | nput Stimuli

In order to facilitate early detection of small changes in the BWR system parameters that may
eventualy lead to instabilities, it is proposed to excite the system with opportune a priori known stimuli
and discover anomaly patterns, if any, from the resulting responses. The study considers BWR system
operations in which anomalies do occur a a dow time-scale while the inferences are made based on the
observation of the fast time—scale system dynamics. The agorithm of anomaly detection relies on this
dual-time scale analysis of the asymptotic response of the dynamica system.

The sdlection of the set of stimuli to be applied to the system is a critical step for the proposed
methodology. The selected perturbation must not interfere with the norma operation of the plant (or, in
this case, with the numerical simulation of the plant). In particular, unstable or excessive oscillations must
not occur as a consequence of the input perturbations and the plant must return to the original state after
the perturbation is terminated. On the other hand, the stimulus imposed to the system has to be ample
enough in order for the analyst to infer the stability characteristic of the plant. These observations are
especialy true for externaly applied small perturbations. Four possible types of perturbation have been
identified (Table 3.2) for aBWR steady-state operation and applied to PB2:

A. System Pressure perturbation by acting on the Turbine Control Valve (TCV).
B. Core Flow perturbation by acting on the Recirculation Pumps.
C. Sub-cooling perturbation by acting on the Feedwater Pre-hesters
D. Changesin Control Reactivity by Control Rods movement
Among the four possible choices, the System Pressure perturbation seems to be the most viable and

secure, whereas for the same reasons the use of the control rods movement seem to be the most
impractical and are not hence investigated further.
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Table 3.2 Appropriate Input Stimuli.

ID STIMULUS EXCITATION CHARACTERISTICS
A.1 | Pressure perturbation by TCV K-sn (2:p-ft) f=04+06Hz
(Continuos) K=0.02 + 0.04 MPa
A.2 | Pressure perturbation by TCV K-sin (2-pf-) f=04+0.6Hz
(Time Intervals) K=0.02 + 0.04 MPa
Time Intervals
?71=0.2 + 10 sec
2t2=0+ 20 sec
A.3 | Pressure perturbation by TCV Square wave (K, 21, 22) K=0.02 + 0.04 MPa
21=0.2 + 10 sec
22=0 + 20 sec
B.1 | Coreflow perturbation by K-sn (2:pf+t) f=04+0.6Hz
Recirculation Pump (Continuos) K=0.05% + 0.1%
B.2 | Coreflow perturbation by K-sin (2:pf-t) f=04+0.6Hz
Recirculation Pump (Time intervals) K=10.05% + 0.1%
Time Intervals
?71=0.2 + 10 sec
22=0 + 20 sec
B.3 | Core flow perturbation by Square wave (K, 21, %2) K=10.05% + 0.1%
Recirculation Pump 71=0.2 + 10 sec
?t2=0+ 20 sec
C.1 | Sub-cooling perturbation by K-sn (2:p-f+t) f=04+0.6Hz
Feedwater Pre-heaters (Continuos) K=0.05% + 0.1%
C.2 | Sub-cooling perturbation by K-sin (2-pf+t) 2pf=04+06Hz
Feedwater Pre-heaters (Time intervals) K= 0.05% =+ 0.1%
Time Intervas
21=0.2 + 10 sec
22=0+ 20 sec
C.3 | Sub-cooling perturbation by Square wave (K, 21, %2) K=0.05% + 0.1%
Feedwater Pre-heaters 2t1=0.2 + 10 sec
22=0 + 20 sec

The control blocks are able to simulate for each of the selected input stimuli, the following three
perturbations shapes (Figure 3.5): 1) continuous sinusoidal shape, 2) fragmented sinusoida shape and 3)

Time(s)

Time(s)

Figure 3.5 Types of Perturbation that Can be Simulated.
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Between all these types of stimuli perturbation, the pressure perturbation by acting on the Turbine
Control Vave was identified to be the most viable. Linear frequency-domain analyses and operationa
experience confirm that the typical natural frequency of BWR instability eventsis about 0.5 Hz. For those
reasons, the value of 0.5 Hz isinitially chosen for the frequency of system pressure perturbations together
with amplitude of 0.02 MPa. Figure 3.6 shows the pressure perturbation applied to the BWR model
beginning from atime of 2000 seconds.
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& 7.04 - -
= i ]
£ 7.035 |- =
(2]
g b AN M 1
L. 708 - —
7025 - , o, 4 . oy p 7
0 500 1000 1500 0™\._2500 3000
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2050 2055 2060 2065 2070
Time (s}

Figure 3.6 System Pressure Perturbation
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3.5 ldentification of Appropriate Perturbed Parameters

Another critical step of the methodology is the selection of suitable perturbed (possibly dowly)
parameters. The followed approach consists in taking into account a combination of the most sensitive
stability variables.

Table 3.3 The Most Sensitive Stability Parameters.

EFFECT ON

PARAMETERS STABILITY

Fuel Assembly Parameters
Flow Area

Hydraulic Diameter
Loss Coefficient at Lower Tie Plate
Loss Coefficient at Upper Tie Plate -
Loss Coefficient Spacer =
Fuel Time Constant
Void Coefficient

Operating Parameters
Reactor Power Level
Reactor Mass Flow
Axial Peaking Factor -
Radia Peaking Factor
Inlet Sub-cooling

Based on the parametersin Table 3.3 an on their relevance to the BWR stability, the following no-
dimensional groups of parameters have been used in the anomaly detection methodology:

t, ot

1) blzixu
M A,

P = Power (W)

M = Core Mass Flow (Kg/s)

' Fuel Time Constant ()

m = Moderator Time Constant ()
n = Average Core Flow Area (1)

—+
11

—t

P %, = Energy produced in the fuel (J) during the time span t; in which a change DT; of the
fuel temperature occurs.

M:A, _

m

Energy removed by the coolant during the time span t,, in which a change DT, of

the coolant temperature occurs.
2

b, =|r, =
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I, = Reactivity Void Coefficient (1/%void)
a =Average CoreVoid (%ovoid)

Insertion of void reactivity

ra |

3 b, = Iry <T|

I ; =Reactivity Temperature Coefficient (1/T)
T = Average Core Temperature (T)

r,»a =Insertion of reactivity from Void Effect

r+ XI' = Insertion of reactivity from Doppler Effect
Importance of the reactivity effects

_ pavg

4y | b, Dp

Pavg = Core Average Pressure
Dp = Core Pressure Drop

Effect of pressure drops.

hl'slat - h
5 5 = W
h =Inlet Liquid Enthalpy
h* = Liquid Enthalpy at Tey
hg™ = Vapour Enthalpy at Te
Effect of subcooling degree.
P r Isat - ;at 1
6 by =—x X = NPCH
) 6 M r sat h;at _ hlsat
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NPCH = Phase Changing Number
r = Liquid Density at T
r o= Vapour Density a Te

N TR B Sy
77 |hsa sal sal -
hgt_h”t rgt

NSUB = Subcooling Number

. 2|
re ]

8) b8:b3xtﬂ: xt_m
tf tf

Importance of the reactivity effects taking into account the different time constants.

Pt X, |r.a|
9 bg:leb?’:Vy A, Y|r |
T

In particular parameters I3, 3, [ and 13 were identified to be more viable to detect difference in the
asymptotic behavior by slow and small changes in their values (see the following Sections).
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3.6 Generation of Time SeriesData

The US NRC thermal-hydraulic system code TRACE (TRAC RELAP Advanced Computation
Engine) coupled with the 3-D neutronics simulator PARCS is used to simulate the Peach Bottom 2 NPP.
Initidlly the point kinetics model, implemented in TRACE, is used to smulate the thermal-
hydraulics/neutron kinetics feedbacks. This model is sufficient to predict the in-phase instabilities.
However, the 3-D kinetics modd (PARCS) has dready been developed and applied in order to:

1) predict the out-of phase instabilities, and

2) refinethe modd to predict the in-phase ingtability

Tree different scenarios, based on the different dependence of the reactivity void coefficient on the
core average exposure, were simulated (Figure 3.7):

a. BOL: Beginning of Life or Beginning of Cycle (BOC);
b. EOL: End of Life or End of Cycle (EOC)

c. CC1: Conservative Case 1 (more insertion of reactivity due to the void feedback effect)

0.00

-0.05 ——BOL

)

-0.20 %

-0.25

Void Reactivity Coefficient (/% Void)

-0.30
0.0 10.0 20.0 300 40.0 50.0 60.0 70.0
CoreAverage Void (%)

Figure 3.7 Void Reactivity Coefficients as a Function of the Average Core Vod

For each scenario, a set of simulations have been performed starting from the rated condition (100%
Power, 100% Mass Flow Rate) and moving aong the Operational Map of the PB NPP (Figure 3.8 and
Table 3.4). For each of these cdculations, sengtivity studies have been performed changing some
parametersin Table 3.3 (Inlet Sub-cooling, Loss Coefficient at Lower Tie Plate, etc). Results of the
simulations have been used to calculate the beta parameters for the anomaly curves (see Section 3.7).

After 2000 seconds of “null” transient simulation, the pressure perturbations, described in Section 3.4
are applied for 500 seconds. The identification of small changes in the behavior of nonlinear dynamics
systems requires the selection of appropriate time series data. The following ones have been taken into
considerations:
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Core Mass Flow In, Core Mass Flow Out;

Reactor Power;

Void Reactivity Feedback, Doppler Reactivity Feedback;

Cladding Rod Temperature,

Feed Water Flow Rate, Steam Line Flow rate;

Feed Water Temperature, Core Inlet Temperature, Subcooling Degree;

RPV Downcomer Levd;
Steam Dome Pressure;

NSUB and NPCH
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40
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20 —

5. APRM SCRAM SETTING LINE
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RB’: EXTRAPOLATED APRM
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CIRCULATION
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20% PUMP SPEED LINE
a = s CURRENT
e Pl ANNED

102.5 X 105 1b/he
] ] | |

0 10 20 30 40 50

60 f0 80 90 loo 110

Area of

Figure 3- 1. Peach Bottom-Z Low-Flow Stability Tests. Planned Test Conditions

CORE FLOW (% RATED)

Figure 3.8 PB2 Operational Map.
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Table 3.4 List of calculations obtained by varying power (P) and Mass Flow Rate (M)

Nomina Power (100%) = 3293000 W
Nomina Core Flow (100%) = 12915 Kg/s

P = 50 + (50/65)* (M-35)

N | M (%) P (%) POOM%) | M (Kgls) P (kW) PIM (kJKQ)
1 100.0 100.00 1,000 12915 3293000 254.97
2 995 99,62 1.001 12865.33 3280335 255.27
3 99.0 99.23 7,002 12815.65 3267669 25557
7 98,5 98.85 1.004 12765.98 3255004 255.87
5 98.0 98.46 7.005 1271631 3042338 256.18
6 975 98.08 1.006 12666.63 30220673 256.48
7 97.0 97.69 1,007 12616.96 3217008 256.79
8 9.5 97.31 1,008 12567.29 3204342 25711
9 96.0 96.92 1010 12517.62 3191677 25743
10 9.5 96.54 1011 12467.94 3179012 257.75
11 95.0 9.15 1012 1241827 3166346 258,07
i 94.5 95.77 1013 123686 3153681 258.40
13 94.0 95.33 1015 12318.02 3141015 258.73
14 935 95.00 1016 12269.25 3128350 250.07
15 93.0 94.62 1017 1221958 3115685 259.40
16 92.5 94.23 1019 12169.9 3103019 259.75
17 92.0 9385 1020 12120.23 3000354 260.00
18 915 93.46 1021 12070.56 3077688 260.44
19 91.0 93.08 1023 12020.88 3065023 260.79
20 905 92.69 1024 1197121 3052358 261.15
21| 90.00 92.31 1026 116235 3039692 26151

In particular Core Mass Flow Out, NPCH, Power and Steam Dome Pressure have been
investigated in depth. Figures 3.9, 3.10, 3.11 and 3.12 show respectively the above mentioned time series
data for the BOL scenario during the selected pressure perturbation transients starting (after 2000 s) from
some of the considered conditions above in Table 3.4.
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1t PRESSURE PERTURBATION (BOL): Mass Flow Out

149, e
100
[LEEE]
AREY Mgs -
(LT
| [TEL]
147} Mars |
ARLE
W | T P PR WS T T A A A
=]
N 115 by
= ! bl e e e e e o I i P g
S |
Z 14y
= i
w
FREER
o
=
112}
111}
114
10mt : ! ¢
a 500 1000 1500 2000 =00 3000
Therse (8]

Figure 3.9 Mass flow out time trend during the pressure perturbation transient for BOL scenario and
different steady state conditions.
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Figure 3.10 NPCH time trend during the pressure perturbation transient for BOL scenario and different
steady state conditions.
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PRESSURE PERTURBATION (BOL): Power
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Figure 3.11 Mass flow out time trend during the pressure perturbation transient for BOL scenario and
different steady state conditions.
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Figure 3.12 Steam Dome Pressure time trend during the pressure perturbation transient for BOL scenario
and different steady state conditions.
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3.7 Resaults from the Application of Early Anomaly Detection of BWR | nstabilities

The combination of Symbolic Dynamics and Formal Languages provides a tool for identification of
small changes in the behavior of nonlinear dynamica systems. The transition from the continuous to a
discrete symbolic description is accomplished by choosing a suitable Poincare section for the time
discretization. The resulting phase-space of the dynamical system is partitioned into a number of cells to
generate a “coordinate grid”’. Each cell is labeled with a symbol and the set of all such symbols congtitutes
the “aphabet” of the symbolic dynamics. Such a mapping attributes a legal (physicaly admissible)
symbol sequence to the system dynamics starting from the initial state, as the dynamic trgjectory in the
phase-space is represented by lega strings of symbols (symbolic language). The phase-space plots
reported in Figures 3.13, 3.14, and 3.15 constitute examples of the graphs used to generate the symbol
sequences. They refer to the BOL scenario with different conditions ranging from 100% of mass flow rate
and power to 90% of mass flow and 92.31% of power. In particular, it is possible to note the change of
the orbit’ s shapes for the following 2-dimensional phase space:

a  Mass Flow In versus Mass Flow Out;
b. Core Power versus NPCH;

c. Power versus Mass Flow In.

The construction procedure for e machines is based upon the trandation of the string of symbols into
a parse tree. A probabilistic structure is then added to each tree node in such a way that the transition
probabilities between different system states (upon occurrence of each symbol of the aphabet) can be
determined and represented by a (stochastic) connection matrix T, which is denoted as a vector
representing any possible anomaly in the dynamical system. An appropriate norm of the difference
between the matrices T under nominal and anomalous conditions is used in the investigation as a measure
of anomaly.

Figures 3.16 through 3.19 show the results obtained by the application of the early anomaly detection
of BWR instabilities respectively for BOL and EOL. Similar results have been obtained for the
conservative case CC1. For each scenario, two time series data have been considered (Mass Flow Out and
NPCH) and for each of them four different beta parameters have been adopted. The behavior is
substantially the same for all graphs and three different regions can be identified:

1) afirst zone where the anomaly curves increases quite rapidly outlining the features of early
anomaly detection methodol ogy;

2) aplateau region that corresponds to the ‘critical’ combination of parameters;

3) athird zone where the anomaly curves restarts to increases, identifying the possible incoming
BWR ingtabilities.

For example in the anomaly curve for the case of BOL in which the Mass Flow Out time series data
was analyzed using the proposed anomaly detection methodology to detect growth of anomaly as
parameter (3, increases, one can see a rapid rise in anomaly measure from the nominal (3, value. This
indicates that the technique is successful in detecting early growth in anomaly. The anomaly curve starts
tolevel onat R, = 2.65 x 10° and starts to slightly increase again a a 3, value of approximately 2.88 x 10°,
which might indicate incoming BWR instabilities.
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Each anomaly curves is bounded with uncertainty bands with a confidence level of 98%. The
uncertainty bands are created from calculating the prediction bounds. The prediction bounds can be
caculated for a new observation or for the fitted function. In creating our uncertainty bands, we
caculated prediction bounds for the fitted function. Additionaly, the bounds can be simultaneous and
measure the confidence for al predictor values or non-simultaneous and measure the confidence only for
a single predetermined predictor value. A simultaneous bound was used with a confidence level of 0.98,
which indicates a 98% level of certainty that all predictor values are contained within the lower and upper
prediction bounds.
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Figure 3.13 Mass Flow In versus Mass Flow Out phase space description: pressure perturbation transient
for BOL scenario and different steady state conditions.
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Figure 3.14 NPCH versus Power phase space description: pressure perturbation transient for BOL
scenario and different steady state conditions.
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Figure 3.19 Anomaly curves and uncertainty bands. Scenario: EOL —
Time Series Datac NPCH — Parameters: 13y, (%, 33 and (4.

3.9 Demonstration of the Capability to Detect BWR Instabilities
It is well known that the BWR operation at rated conditions is always in the stable region,

whereas instability events may occur at low flow and relatively high power operation (Figure
3.20).

UNSTABLE

T~

POWER STABLE

0 FLOW '

Figure 3.20 BWR Operational Map.

Taking example from the instability accident that occurred at the LaSalle BWR, a series of
TRACE smulation of a double recirculation pump trip transient originating at different ‘steady
state’ conditions is executed to determine whether or not instabilities will occur during operation
in natural circulation following the pumps trip.

Thisdiscussion is intended as a demonstration of the capability of the methodology to predict
the BWR instabilities. A more sophisticated qualification process for the proposed methodol ogy
is under way and it will congtitute one of the main goals to be achieved during the second year of
the project.

The analysis presented in this report is focused only on the BOL scenario. Similar results
have been obtained for EOL and CC1 scenarios. The base-case simulation (100% of Power and
100% of Mass Flow Rate) shows that the natural circulation mode is stable (Figure 3.21). The re-
circulation pump trip occurs at 2000 seconds into the simulation. Subsegquent sensitivity
calculations show, as expected, that the reactor operation moves towards an unstable behaviour
when the insertion of reactivity due to the void feedback increases. In correspondence of 68% of
Mass Flow Rate and 75% of Power the first insurgence of instabilities occurs (Figure 3.22). The
average core void is 48% and the 13; parameter has a value of about 3.2. Figure 3.23 shows that in
correspondence of this value of 13; the anomaly measure is 0.78 (the time series data taken into
consideration is the Mass Flow Out) and this point is situated in the third zone of the anomaly
curves after the plateau region, i.e. where the anomay methodology identifies the possible
presence of BWR instabilities.
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In this research, a new methodology for early detection of BWR instabilities has been
developed and an initial demonstration of the capability of the methodology to predict the
BWR ingtabilities has been done. A more sophisticated qualification process for the
proposed methodology is under way and it will congtitute one of the main goals to be
achieved during the second year of the NEER project.
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Figure 3.21 Recirculation Pump Trip: Base-Case.
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4 Project Scheduleand Management

The work during the ' year of the project was performed by Professor Ivanov (as lead
principa investigator — Pl) and assisted by one Ph.D. student from the Nuclear Engineering
Program. The methodology being developed in the framework of the project serves as the PhD
dissertation topic of this student. Two other faculty form the MNE Department at PSU, which are
members of his PhD Committee, participated actively in this project as non-paid collaborators
and advisers. Professor A. Ray is bringing to the project his expertise in system dynamics and
artificia inteligence and Professor F. B. Cheung is bringing to the project his expertise in
thermal-hydraulics and nuclear safety. The outlined below four Tasks for the Phase 1 of Year 1 of
the project are completed.

1) Phasel - Year 1:

Task 1— 3 months (Completed)
Identification of the appropriate stimuli class for BWR-type of instabilities for both simulation
models using the coupled simulation tools

Task 2— 3 months (Completed)

Development of solution procedure for generating time-series data from the models developed
under both normal and selected anomaly conditions

Task 3— 3 months(Completed)
Development of a procedure for conversion from continuous dynamics of time series data to
symbolic dynamics.

Task 4— 3 months (Completed)
Construction of a vector space of formal languages and a metric to serve as a distance function.

The performed work during the first year is summarized in this report and presented to DOE.
Two publications are completed based on the accomplished work during the 1™ year of the project
— one on the concept of the methodlogy® and the other on the development of the methdology®. A
journal paper summarizing the work done during the first year of this project is being finalized
and it will be sent to Annalsof Nuclear Energy for publication.

According to the project schedule the following fours tasks will be performed during he 2
year of the project.

2) Phase2 —Year 2:

Task 5—2 months

Formulation of a forward functiona relationship of the anomalies to the measured distances
between symbolic languages under each of the exogenous stimuli

Task 6—2 months
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Veification of the forward methodology using the ssimulation models and tools

Task 7— 3 months
Applications of the Forward Problem Formulation to BWR Instabilities Analyses

Task 8—5 Months

Feasbility study on identification of a set of potential anomalies as an intersection of the
inverse images of the measured distances between symbolic languages under the forward
functional relationship for each of the exogenous stimuli

The performed work during the second year will be summarized in a report and presented to

DOE. The performed work on the whole project will be summarized in a fina report and
presented to DOE. A conference and/or journa paper will be prepared describing the developed
methodology and obtained results.

5
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